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In this paper we consider declarative knowledge bases as first-order (el-
ementary) theories. We study an operation of incremental data extraction,
which is closely connected with query reformulation in information retrieval
and data integration. We introduce a formal definition of this operation and
provide it with semantics in terms of lattices by using the main theorem of
Formal Concept Analysis.
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B nannoit pabote MBI pacCMaTPUBAEM JTEKJIAPATUBHBIE OA3bI 3HAHUN KaK
(smeMeHTapHBIE) TEOPWW B JIOTHKE TIEPROTO TOpsiyKa. MBI mccenyem omepa-
[0 TOCIE0BATENHHON BBIOOPKH JAHHBIX, KOTOPas TECHO CB3daHA C Ie-
pedopMynupoBarueM 3anpocos npu MHGOOPMAITHOHHOM IOUCKE W HHTErDa-
MU PA3HOPOHBIX UCTOYHUKOB JaHHBIX. MBI BBOMM (hbopMaspHOe olpe/ie-
JleHHe JaHHON OIepalyuyu W OIpelesisgeM ee CEMaHUTKY B TEPMHHAX Delle-
TOK, HCIIOJIb3YsI OCHOBHYIO TEOPEMY METO/Ia aHaIn3a (HPOPMATbHBIX TOHATHH
(Formal Concept Analysis).
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1. INTRODUCTION

At present, there is a significant interest to methods and tools of declarative
knowledge representation, which is in particular connected with the wide-spread
notion of formal ontology. The outcome of this is development and application
of new descriptive languages, as well as reasoning or deductive systems. Each of
newly appeared languages corresponds to some subset of First Order Logic (FOL).
However, judging from practice, ontological engineers have realized the need of the
full FOL to work with the information they encounter.

In this work, we consider declarative knowledge bases as first-order (elemen-
tary) theories, i.e. sets of closed formulas of the predicate calculus. We distinguish
two scenarios of their use in practical applications, namely, for search in large data
repositories and for integration of heterogeneous data sources. In spite these two
scenarios have much in common, they are approached differently in the field of
information management.

The first one is mostly considered in connection with the Internet search prob-
lem, however there are many other actual applications [1, 2, 7]. In this scenario,
queries are formulated in terms represented by a declarative description of the
subject domain of interest. Usually, there is an initial query, which is to be refor-
mulated or strengthened/relaxed according to the relevance of search results or
according to other alternative criteria. All query transformations are performed
basing on the data in the given formal description of the subject domain.

The second scenario is best reflected in the present research on Peer-to-Peer
systems [5, 6]. The purpose of declarative descriptions in this case is to represent
a conceptual schema of a data source, i.e. to describe the knowledge it provides
access to. A query built in terms of one data source is reformulated in terms of
another one to provide data exchange and distributed information search. Thus,
it is necessary to find a correspondence or to build a mapping between two declar-
ative descriptions. In most of cases, there is no need to build a correspondence
between two descriptions as a whole. Instead, some part of a description contain-
ing the key query terms is needed to be mapped onto another one. How this part
is chosen greatly influences the “precision of mapping”, which clearly, has lots of
consequences.

In both scenarios, such declarative descriptions are themselves used as data
sources, but the information extracted from them is mostly not sets of constants,
but sets of expressions or formulas which are treated as facts in solving a given
task.

Proceeding from these two scenarios, we define in Sect. 2 the operation of
incremental data extraction from declarative knowledge bases. Next, we formulate



basic notions and the main theorem of Formal Concept Analysis in Sect. 3 as
detailed as it is needed in this paper. Then we introduce the lattice semantics for
the mentioned operation in Sect. 4 and consider one algorithm connected with
the incremental data extraction in terms of lattices. Section 5 contains some final
remarks and conclusions.

2. THE OPERATION OF INCREMENTAL DATA EXTRACTION

In our work we consider declarative knowledge bases as finitely axiomatiz-
able elementary theories and assume that they are not deductively closed. By
incremental data extraction from a knowledge base we mean here a sequential
selection of sentences according to some predefined strategy. We consider this to
be the most general view at the use cases mentioned in the introduction.

Indeed, in the first scenario, a typical algorithm starts, for example, from some
set of constant symbols as an input. Then it uses relations defined on these sym-
bols to extract new constants, then uses formulas expressing relation properties
and so on. All the extracted information is used in the search. Sometimes, a choice
of some set of formulas may be rejected for the reason of poor relevance of the
search results, and another set can be chosen instead.

In most of cases, it is hard to predict an effect of usage of this or that informa-
tion in a concrete search task. At least it is possible to choose between different
“types” of formulas, e.g. ground, restrictive or non-restrictive clauses. An excellent
illustration of this kind of strategies can be found in papers devoted to algorithms
of database schema matching [4, 3]. The operation of an incremental data extrac-
tion can be based on quite different strategies, but we argue that the very basic
and common strategy of this operation can be considered from a purely syntacti-
cal point of view. Further we formally define the operation of an incremental data
extraction.

Let T be an elementary theory of a signature X. That is, T consists of sentences
which use symbols only from X. We will consider signatures as consisting only of
predicate symbols, since functions of an arbitrary form can be substituted by
corresponding predicates via the standard representation of functions by graphs.
Let us define an auxiliary function Sig : Ts — 2% that we will use throughout
this paper. For any set of sentences from T, this function gives a set of signature
elements occurring in these sentences.

Definition 1. Let T be an elementary theory of a signature .. A relation
R C X x X is called a syntactical relation on Ts, if
VabeX ((a,b) E R+— T p T (a€ Sig(y) and b € Sig(v)))
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Fig. 1. Representation of the thesaurus via a syntactical graph

We will further use the symbol R to denote syntactical relations. The reader
might have a doubt about this definition, as the relation R depends on the form
of formulas in a theory. We explain how we address this problem in Sect. 4.

We assume that by formally describing a subject domain, all the considered
concepts are mapped onto signature symbols of the constructed theory. One may
consider this as determining an alphabet of a language for describing the subject
domain. We also take an assumption that there is a connection between two
concepts, if there exists a sentence in the theory, which contains signature symbols
denoting these terms. Thus, for a given theory T in a signature X we may consider
a syntactical graph with the set of vertices equal to 3, the set of edges equal to
the set of sentences of Tx and with the incidence relation R. Let us illustrate this
by a simple example with a thesaurus.

Example 1. Let ¥ = {4, B,C, D} and Ts, = {Vz(A(x) — D(z)), Vz(B(z) =
C(xz)), Vx(C(x) — D(z))}. The representation of this kind of a thesaurus in a
form of a syntactical graph is illustrated below in Fig. 1 (quantifiers and variables
are omitted for brevity).

In the scope of the scenarios considered at the beginning of this section, we
may figuratively speak about key concepts as some subset of vertices and a radius
around these vertices, which represents how much of the known information about
them is used in solving a concrete task (e.g., a search task).

Definition 2. We define the operation of an incremental data extraction as
the following two complementary actions:

1. Extending a given subset o C X via the relation R (i.e., for a sentence
v € T, we add new elements from Sig(y) to o, if Sig{p) No # @);

2. Eztending a given subset S C Tk, via the relation R (i.e., we add a sentence
weTs, p¢ S, if there exists v € S such that Sig{p) N Sig(v) # @).



3. BASIC NOTIONS OF FORMAL CONCEPT ANALYSIS

Our aim is to give a formal semantics to the operation of an incremental data
extraction introduced above. For this purpose we employ the main theorem of
Formal Concept Analysis [9]. This method was developed by Ganter and Wille as
a restructuring of the lattice theory and a formalization of the notion of concepi.
Further we define basic notions of FCA as detailed as it is needed to explain the
use of the main theorem.

Definition 3. A formal context is a triple (G,M,I), where G and M are
sets and I C G x M is a relation between G and M. The elements of G are called
objects and the elements of M are called attributes of the formal context. The
relation I is called the incidence relation of the context.

Definition 4. For sets A C G and B C M we define an operation’ as follows:
A'={me M |gIm forall g€ A}
and B'={g € G | gIm for all m € B}

Definition 5. A formal concept of the formal context (G,M,I) is a pair
(A,B) with ACG, BC M, A'=B and B' = A. A is called the extent and B
is called the intent of the formal concept (A, B).

Sometimes we will omit the word formal and call such pairs simply concepts.

Proposition 1. Let (G, M,I) be a formal contezxt and A, A1, Ay C G. Then
the following is true:
2. AC A"

Definition 6. Let us define a relation < as follows: if (A1, B1) and (A2, By)
are concepts, then (A1, B1) < (A2, B2), if A1 C As (which is equivalent to By C
B1, according to proposition 1).

(A1, Bh) is called sub-concept of (A2, B2) and (A2, Ba) is called super-concept
Of (Al, B1 ) .

The relation < is called the hierarchical order or simply the order of the
concepts.

Definition 7. For a formal context K = (G, M, I), the ordered set of all con-
cepts of K is called the concept lattice of K.



Fig. 2. A formal context for T and the resulting concept lattice

The Main Theorem of FCA The concept lattice of a formal context is a
complete lattice, in which the infimum and the supremum are given by:

A5 B) = (0,45, (U B))

jeJ
. — . " .
VB = (A" 0,5

4. LATTICE SEMANTICS VIA FCA

In the following, we introduce the lattice semantics for the operation of an
incremental data extraction, considered in Sect. 2.

Let T5 be an elementary theory of a signature X. Consider a formal context
K = (%,T%,I) with the set of objects equal to the set of signature elements,
the set of attributes equal to the set of sentences of the theory Ts and with the
incidence relation I defined as follows:

Va€ Ve € Tx (alp, if a € Sig(p)) (1)

Then a formal concept in K is a pair (A, B), in which A is a set of signature
elements and B is the set of all those sentences in T which contain all symbols
from A. Let us illustrate this again by an example with a thesaurus.

Example 2. Consider the theory T from example 1. Let us assign indices
{1,2,3} to the sentences in Ts,. Then, the corresponding formal context and, more
precisely, the incidence relation I can be represented by the table in Fig.2. The
nodes in the resulting concept lattice are labelled with extents and intents of the
corresponding formal concepts.



Considering a declarative knowledge base as an elementary theory T of a
signature ¥ and having a corresponding formal context K = (33, Tx,I), we define
the operation of an incremental data extraction from T as a computation of the
order on formal concepts in K. By this we mean a sequential computation of
super- /sub-concepts for concepts from a given initial set.

The initial set of concepts for a subset o C X is computed as the antichain
of minimal concepts (A;, B;), such that UA; D o. Conversely, the initial set of
concepts for S C T% is computed as the antichain of maximal concepts (4, B:),
such that UB; D S. This corresponds to definitions 2 and 6.

The set of concepts computed by an incremental data extraction procedure
can be represented by a union of chains in the concept lattice of K. Let us call
such unions of chains as paths.

Definition 8. A path P is called continuous, if (,Ts) ¢ P and (X,0) ¢ P.

Definition 9. Let us consider a signature ¥ and a theory T in this signature
defined by some set of closed formulas (sentences).

The theory Tx, is called decomposable, if the signature is a disjoint union of
two subsets 31,33, X1 MNY2 =, X = 31 U2 and there exist theories S1, Sa
for Ts;, such that T, = S1 U Sy and each symbol used in S;,i = 1,2 is from the
signature 3;, respectively. We denote T, = S1 U Ss.

The question of decomposability of theories has significant importance in the
field of formal knowledge representation. Since decomposability means the possi-
bility to split a formal representation of a considered subject domain into parts,
each described by a separate set of terms.

For instance, when building a formal description of a subject domain, it often
turns out that data obtained from an expert (or extracted automatically) is a
mixture of facts that are needed to be structured in order to obtain an adequate
model. In particular it may be interesting, if there exist parts of the knowledge
that are independent from each other. This exactly corresponds to the question
of decomposability, if one considers a formal description of a subject domain as
a logical theory (say, in some subset of the language of the first-order logic). For
the more detailed study of decomposability of theories, please refer to the paper
[8].

Proposition 2. Let Tx, be a decomposable theory of a signature 3, represented
by a disjoint union of two sets of sentences T = S1 US>, Let K = (X,T%,1) be a
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formal context with the incidence relation I defined as in (1) and L be a concept
lattice of K.

Then there is no continuous path in L, which contains formal concepts (A;, B:),
such that UB;NS1 # & and UB; NSy # 3.

Obviously, as Ty = S1 U Sz, S1 NSz = @ and Sig(S1) N Sig(S2) = @, the
theory Tx, can be represented by two independent formal contexts, in the sense
that the sets of their objects and attributes do not intersect. This means that the
theory can be represented by a join of two different concept lattices having only
two common elements, which are (@,7%) and (X, ©).

Let us also notice that if a theory is decomposable, then a table representa-
tion of the corresponding formal context (see Example 2) has the form of a block
diagonal matrix (after an appropriate rearrangement of lines and columns).

It is necessary to clarify an important question concerning our idea to represent
theories in the form of lattices. Indeed, do we have a unique lattice representation
for (logically) equivalent theories? In general, the answer is negative and the reason
of this is the syntactical nature of our approach. However, it is possible to obtain
a one-to-one correspondence, if some normalization of a theory is made:

1. All sentences of the theory are reduced to the conjunctive normal form
and all the conjunctions are split into separate sentences;

2. Each sentence is transformed into an equivalent one, which uses the least
number of signature symbols.

Regarding the second operation, it follows from the Craig’s interpolation the-
orem [10, 11] that for any sentence ¢ there exists a unique sentence ¥ ~ ¢, such
that ¢ has the least number of signature symbols. In particular, all invalid occur-
rences of symbols (in the form of (p V —p)) can be eliminated.

Finally, we consider an algorithm for solving a problem, which is important
in the scope of the incremental data extraction. As the input can be a subset of
a signature of a theory, it is important to determine a minimal set of sentences
covering this subset (further it can be extended according to a chosen strategy).
We formulate this as the following problem.

Problem. Given a theory Tx. in a signature X and a subset o C 3, find a minimal
set of sentences S C Tk, such that Sig(S) D o.

Clearly, there may exist several sets of sentences in T satisfying this property

and the corresponding algorithm is non-deterministic. Here we briefly describe the
algorithm, without mentioning implementation details. Here we assume that for
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any element o € 3, there is at least one sentence ¢ € T, such that a € ¢.

Algorithm.

1. Compute an antichain of maximal concepts in the lattice of the context
K = (3,T%,1), where I is defined as in (1) (let us denote the obtained set
of concepts by Cpaz).

2. Take a concept (A, B) € Crnaz, such that the intersection AN is maximal.
Add any sentence from B to the output set U. Reduce o by A and Ciax
by (A4, B), correspondingly.

3. Repeat the previous step, until o = &. Return U.

5. CONCLUSIONS

In this paper, we considered declarative knowledge bases represented by sets
of first-order closed formulas of an arbitrary form. However it is often practical,
especially regarding the normalization of theories, to restrict ourselves to specific
classes of formulas. We believe, it is quite reasonable to consider Horn formulas, on
which modern rule languages are based. There are almost no difficulties with the
first normalization step for this sort of formulas, including extended Horn clauses,
with respect to Lloyd-Topor transformations [12]. Not taking equivalences into
account, the time complexity of these transformations is linear in the length of the
formula. The second normalization step is proved to be of polynomial complexity
[13] in this case. In general, it is important to notice that the applicability of our
approach does not depend on a language, but relies much upon the normalization
procedure in it.
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