

Siberian Division of the Russian Academy of Sciences
A. P. Ershov Institute of Informatics Systems

Sergey Brazhnik, Alexandre Zamulin

AN IMPERATIVE EXTENSION
OF THE OBJECT CONSTRAINT LANGUAGE OCL

Preprint
123

Novosibirsk 2005

An extension of the object constraint language OCL by a mechanism permit-
ting specification of methods updating the object state is described and investi-
gated in the paper. An original version of transition rules of Abstract State Ma-
chines is proposed as such a mechanism. The new language facilities are investi-
gated by specification of the class diagram of a representative example.

© A. P. Ershov Institute of Informatics Systems, 2005

Российская академия наук
Сибирское отделение

Институт систем информатики
им. А. П. Ершова

С. А. Бражник, А. В. Замулин

ИМПЕРАТИВНОЕ РАСШИРЕНИЕ
ЯЗЫКА СПЕЦИФИКАЦИИ ОБЪЕКТОВ OCL

Препринт
123

Новосибирск 2005

В данной работе описывается и исследуется расширение языка специ-
фикации объектов OCL средствами спецификации методов, изменяющих
состояние объекта. В качестве таких средств предложена собственная вер-
сия правил перехода машин абстрактных состояний. Новые языковые сред-
ства исследованы путем спецификации диаграммы классов репрезентатив-
ного примера.

© Институт систем информатики им А. П. Ершова СО РАН, 2005

5

1. INTRODUCTION*

In this paper we describe in short the IOCL, an imperative extension of the Object
Constraint Language (OCL) standard 1.5 [1], and investigate its applicability for
specification of state updating methods (full description of IOCL can be found in
[2]). OCL is a formal language used to express constraints. These typically spec-
ify invariant conditions that must hold for the system being modeled. In addition
to the standard OCL facilities, IOCL permits specification of state updating
methods (called mutators in the sequel) by means of the so called transition rules,
which resemble statements of an imperative programming language. The idea is
to provide an executable specification of mutators which can be compiled into
executable code. The set of transition rules is based on the set of rules of Abstract
State Machines [3] modified to fit our purposes.

No standard OCL facility is changed in IOCL.

2. STATE DIAGRAM OVERVIEW

In this section, using the class diagram of Fig. 1 (the diagram will be also used in
the subsequent examples), we remind the main notions of UML class diagrams.
Class (Bank, Person, …) – a description of a set of objects that share the same
attributes, operations, methods, relationships, and semantics.
Classifier (type, class, …) – a mechanism that describes behavioral and struc-
tural features of an entity.
Attribute (birthdate, age, …) – a feature within a classifier that describes a
range of values that instances of the classifier may hold.
Operation (income, stockPrice, …) – a service that can be requested from an
object to effect behavior. An operation has a signature, which may restrict the
actual parameters that are possible.
Method – the implementation of an operation. It specifies the algorithm or proce-
dure associated with an operation.
Relationship (customer, husband, …) – a semantic connection among model
elements. Examples of relationships include associations and generalizations.
Association (customer, husband, …) – the semantic relationship between two
or more classifiers that specifies connections among their instances.

* This research is supported in part by Russian Foundation for Basic Research under Grant 04-01-
00272.

6

Association end – the endpoint of an association, which connects the association
to a classifier (i.e., the point where the line representing an association touches
the box representing a classifier).

+stockPrice() : Double

+name : String
+numberOfEmployees : Integer

Company

+male
+female

«enumeration»
Sex

+income(in date : Date) : Integer

+isMarried : Boolean
+isUnemployed : Boolean
+birthDate : Date
+age : Integer
+firstName : String
+lastName : String
+sex : Sex

Person

+title : String
+startDate : Date
+salary : Integer

Job
0..*+employee

0..*+employer

+manager

*

+managedCompanies

0..*

0..1

+customer*

husband 0..1

+place : Single
+date : Date

Marriage

wife 0..1

accountNumber:Integer

Bank

Fig. 1. Class Diagram Example

7

3. OCL OVERVIEW

3.1. Purpose of OCL

A UML diagram, such as a class diagram, is typically not refined enough to pro-
vide all relevant aspects of a specification. There is, among other things, a need
for describing additional constraints concerning the objects in the model. Such
constraints are often described in natural language. Practice has shown that this
always results in ambiguities. In order to write unambiguous constraints, the so-
called formal languages have been developed. OCL is a formal specification lan-
guage that is yet easy to read and write. It is a pure expression language; there-
fore, an OCL expression is guaranteed to be side-effect free. This means that the
state of the system will never change because of the evaluation of an OCL expres-
sion, even though an OCL expression can be used to specify a state change (for
example, in a postcondition). OCL is a typed language, so each OCL expression
has a type.

3.2. Where to Use OCL

OCL can be used for a number of different purposes:
• to specify invariants on classes and types in the class model,
• to describe pre- and postconditions on Operations and Methods,
• to describe Guards,
• as a navigation language,
• to specify constraints on Operations.

3.3. Main components of OCL

3.3.1. Expressions

Each expression in OCL is constructed in a certain context denoted by keyword
context. The subsequent keyword inv, pre, or post indicates whether the
constraint concerns the «invariant», «precondition», or «postcondition». The ac-
tual OCL expression comes after the colon.

Each OCL expression is written in the context of an instance of a specific
type. The reserved word self is used to refer to the contextual instance. For ex-
ample, if the context is Company, then self refers to an instance of Company.

8

3.3.2. Invariants

The OCL expression can be part of an invariant of a type, and in this case it must
be true for all instances of the type at any time (all OCL expressions that express
invariants are of the type Boolean). For example, for the Company type, the fol-
lowing expression would specify an invariant that the number of employees must
always exceed 50:

context Company inv: self.numberOfEmployees > 50

where self is an instance of type Company (one can view self as the object
“owning” the expression). This invariant holds for every instance of the Company
type.

In most cases, the keyword self can be dropped because the context is clear,
(as this in C++ or Java). As an alternative for self, a different name can be
defined playing the part of self:

context c : Company inv: c.numberOfEmployees > 50

This invariant is equivalent to the previous one.

3.3.3. Pre- and Postconditions

The OCL expression can be part of a precondition or postcondition associated
with an operation or method. The general form:

context TypeName::OpName(par1: Type1, ...): ReturnType
pre : par1 > ...
post: result = ...

The name self can be used in the expression referring to the object on which
the operation was called. The precondition (like the postcondition) can also in-
clude operation parameters (par1, …), thus putting extra requirements on them.

. In the example diagram, we can write:
context Person::income(d : Date) : Integer

pre : d >= currentDate
post: result = 5000

The reserved word result in a postcondition denotes the result of the opera-
tion, if there is one. It is obligatory in the specification of an operation for which
the predicate isQuery produces True, and icannot be used for an operation for
which the predicate isQuery produces False.

The predicate isQuery specifies whether the execution of the operation leaves
the state of the system unchanged. True indicates that the state is unchanged;
False indicates that a side-effect may occur.

9

3.4. Basic Values and Types

3.4.1. Atomic types

In OCL, a number of basic types are predefined and available to the modeler at
all times. The most basic value in OCL is a value of one of the basic types. Typi-
cal basic types used in the examples in this document are Boolean, Integer,
Real, and String.

Enumerations are data types in UML and have a name, just like any other
Classifier. An enumeration defines a number of enumeration literals, which are
the possible values of the enumeration. When we have a data type named Sex
with values female or male, they can be used as follows:

context Person inv: sex = Sex::male

3.4.2. Collections

The type Collection is predefined in OCL. Consistent with the definition of
OCL as an expression language, collection operations never change collections.
They may result in a collection, but rather than changing the original collection
they project the result into a new one.

Collection is an abstract type, with concrete collection types as its sub-
types. OCL distinguishes three different collection types: Set, Sequence, and
Bag. A set is the mathematical set. A bag is like a set, which may contain dupli-
cates; that is, the same element may be in a bag twice or more. A sequence is like
a bag in which the elements are ordered. Both bags and sets have no order de-
fined on them.

Sets, sequences, and bags can be specified by a literal in OCL. Curly brackets
embrace the elements of the collection, elements in the collection are written
within, separated by commas. The type of the collection is written before the
curly brackets:

Set { 1 , 2 , 5 , 88 }
Set { 'apple' , 'orange', 'strawberry' }
Sequence { 1, 3, 45, 2, 3 }
Sequence { 'ape', 'nut' }
Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a sequence of consecutive integers, there is a
separate literal to create them. The elements inside the curly brackets can be re-
placed by an interval specification, which consists of two expressions of type In-
teger separated by ‘..’. This denotes all the integers between the values of the ex-
pressions (including their values as well):

10

Sequence{ 1..(6 + 4) }
Sequence{ 1..10 }
-- are both identical to
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

Within OCL, all collections of collections are flattened automatically; there-
fore, the following two expressions have the same value:

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }
Set{ 1, 2, 3, 4, 5, 6 }

3.4.3. Collection Operations

OCL defines many operations on the collection types. A collection operation is
accessed by using an arrow ‘->’ followed by the name of the operation and argu-
ments, if any. Examples:

context Person inv: self.employer->size() < 3

This applies the size property on the set self.employer, which results in the
number of employers of the person self.

context Person inv: self.employer->isEmpty()
This applies the isEmpty property on the set self.employer. This also evalu-
ates to true if the set of employers is empty and false otherwise.

Several collection operations are specifically meant to enable a flexible and
powerful way of projecting new collections from existing ones.

The select operation specifies a subset of a collection. Its parameter has a
special syntax that enables one to specify which elements of the collection we
want to select. There are three different forms, of which the simplest one is:

collection->select(boolean-expression)

This results in a collection that contains all the elements from collection
for which the boolean-expression evaluates to true. As an example, the
following OCL expression specifies that the collection of all the employees older
than 50 years is not empty:

context Company inv:
self.employee->select(age > 50)->notEmpty()

In the above example, it is impossible to refer explicitly to the persons them-
selves; one can only refer to properties of them. To enable to refer to the persons
themselves, there is a more general syntax for the select expression:

collection->select(v | boolean-expression-with-v)

The variable v is called the iterator. When the select is evaluated, v iterates
over collection and boolean-expression-with-v is evaluated for each v.
The following example is identical to the previous one:

context Company inv:
self.employee->select(p | p.age > 50)->notEmpty()

11

As a final extension to the select syntax, the expected type of the variable v
can be given. The select now is written as:

collection->select(v : Type | boolean-expression-with-v)

The meaning of this is that the objects in collection must be of type Type.
The next example is identical to the previous ones:
context Company inv:
self.employee.select(p : Person | p.age > 50)->notEmpty()

The reject operation is identical to the select operation, but with reject
we get the subset of all the elements of the collection for which the expression
evaluates to False. The reject syntax is identical to the select syntax:

collection->reject(v : Type | boolean-expression-with-v)
collection->reject(v | boolean-expression-with-v)
collection->reject(boolean-expression)

As an example, we specify that the collection of all the employees who are
not married is empty:

context Company inv:
self.employee->reject(isMarried)->isEmpty()

The collect operation serves for specifying a collection that is derived from
some other collection. The operation uses the same syntax as select and re-
ject:

 collection->collect(v : Type | expression-with-v)
 collection->collect(v | expression-with-v)
 collection->collect(expression)

The value of the collect operation is the collection of the results of all the
evaluations of expression-with-v. An example: specify the collection of
birthDates for all employees in the context of a company. In the most general
form, this can be written as follows:
self.employee->collect(person : Person | person.birthDate)

An important issue here is that the resulting collection is not a set, but a bag
(more than one employee may have the same value for birthDate). It is possible
to make a set from the bag, by using the asSet() operation. Example:

self.employee->collect(birthDate)->asSet()

Because navigation through many objects is very common, there is a short-
hand notation for the collect that makes the OCL expressions more readable.
Instead of

self.employee->collect(birthdate)

we can also write:
self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will
automatically be interpreted as a collect over the members of the collection
with the specified property.

12

Many times a constraint is needed on all elements of a collection. The
forAll operation in OCL allows specifying a Boolean expression, which must
hold for all objects in a collection. It has the same syntax as the previous opera-
tions. For example, in the context of a company:

context Company
inv: self.employee->forAll(forename = 'Jack')

This invariant evaluates to true if the forename feature of each employee is
equal to 'Jack'.

When one needs to know whether there is at least one element in a collection
for which a constraint holds, the exists operation is used. It allows one to spec-
ify a Boolean expression that must hold for at least one object in a collection. For
example, in the context of a company:

context Company inv:
self.employee->exists(forename = 'Jack')

the invariant holds if the forename feature of at least one employee is equal to
'Jack'.

The any operation returns any element in the collection for which
expr evaluates to true. If there is more than one element for which expr is true,
one of them is returned. The precondition states that there must be at least one
element fulfilling expr; otherwise, the result of this operation is Undefined.

 collection->any(expr : OclExpression) : T

3.4.4. Type Conformance

OCL is a typed language and the basic value types are organized in a type hierar-
chy. This hierarchy determines conformance of different types to each other. A
type type1 conforms to a type type2 when an instance of type1 can be substi-
tuted at each place where an instance of type2 is expected. Type conformance
rules for types in the class diagrams are simple:

• each type conforms to itself and each of its supertypes;
• type conformance is transitive: if type1 conforms to type2, and type2

conforms to type3, then type1 conforms to type3.
The effect of this is that a type conforms to its supertype, and all the super-

types above.
The type conformance rules for the value types are as follows:

Set(T) conforms to (is a subtype of) Collection(T)
Sequence(T) conforms to (is a subtype of) Collection(T)
Bag(T) conforms to (is a subtype of) Collection(T)

Integer conforms to (is a subtype of) Real

13

In addition to the type conformance rules indicated above, the following rule
holds for all collection types:

Collection(type1) conforms to Collection(type2), when type1
conforms to type1.

For example, if Bicycle and Car are two separate subtypes of Transport:
Set(Bicycle) conforms to Set(Transport)
Set(Bicycle) conforms to Collection(Bicycle)
Set(Bicycle) conforms to Collection(Transport)

An OCL expression which satisfies type conformance is a valid expression.

3.4.5. Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined
on a subtype of the current known type of the object. Because the property is not
defined on the current known type, this results in a type conformance error.

When it is certain that the actual type of the object is the subtype (the effect of
the operation is undefined, otherwise), the object can be retyped using the opera-
tion oclAsType(OclType). This operation results in the same object, but the
known type is the argument type. When there is an object object of type type1
and type2 is its subtype, it is allowed to write:

object.oclAsType(type2) — evaluates to an object of type type2
The operation oclAsType can also be used to regard a subtype object as a

supertype object.
In both cases, if type1 and type2 are not in the supertype-subtype relation-

ship, the expression is undefined.

3.4.6. Undefined Values

Whenever an OCL expression is being evaluated, there is a possibility that one or
more of its subexpressions are undefined. If this is the case, then the complete
expression will be undefined. There is an exception for the expression of type
Boolean: it is always defined, i.e., it always produces True or False, independ-
ent of definedness of its subexpressions In particular:

• True OR-ed with anything is True
• False AND-ed with anything is False
• e1 = e2 is True iff both e1 and e2 are defined and equal.

The above three rules are valid irrespective of the order of the arguments and
whether or not the value of the other sub-expression is known.

14

In IOCL, there is a special predicate defined used to check whether an ex-
pression is defined in the current state. Thus, if t is an expression of any type,
then defined t produces True if t is defined and False in the opposite case.

3.5. Let Expressions

Sometimes a sub-expression is used more than once in a constraint. The let ex-
pression allows one to define an attribute or operation that can be used in the con-
straint.

context Person inv:
let income : Integer = self.job.salary->sum()
let hasTitle(t : String) : Boolean =

self.job->exists(title = t) in
if isUnemployed then

self.income < 100
else

self.income >= 100 and self.hasTitle(‘manager’)
endif

A let expression may be included in an invariant or pre- or postcondition. It is
then only known within this specific constraint.

3.6. Properties

All attributes, association-ends, methods, and operations without side-effects that
are defined in data types can be used in expressions. In a class model, an opera-
tion or method is defined to be side-effect-free if the isQuery attribute of the
operation is true. Attributes, association-ends, and side-effect-free methods and
operations are called properties.

3.6.1. Attributes

The value of a property on an object that is defined in a class diagram is specified
by a dot followed by the name of the property.

context AType inv: self.property

If self is a reference to an object, then self.property is the value of the
property property on self. For example, the age of a Person is written as
self.age:

context Person inv: self.age > 0
The value of the subexpression self.age is the value of the age attribute on

the particular instance of Person identified by self.

15

3.6.2. Operations

Operations may have parameters. For example, as shown earlier, a Person object
has an income expressed as a function of the date. This operation would be ac-
cessed as follows, for a person aPerson and a date aDate:

aPerson.income(aDate)
The operation itself could be defined by a postcondition constraint. The ob-

ject that is returned by the operation can be referred to by result. It takes the
following form:

context Person::income (d: Date) : Integer
post: result = age * 1000

The right-hand-side of this definition may refer to the operation being de-
fined; that is, the definition may be recursive as long as the recursion is not infi-
nite. To refer to an operation or a method that doesn’t take a parameter, parenthe-
ses with an empty argument list are mandatory:

context Company inv: self.stockPrice() > 0

3.6.3. Association Ends and Navigation

Starting from a specific object, one can navigate an association on the class dia-
gram to refer to other objects and their properties. To do so, one navigates the
association by using the opposite association-end:

object.rolename
The value of this expression is the set of objects on the other side of the ro-

lename association. If the multiplicity of the association-end has a maximum of
one (“0..1” or “1”), then the value of this expression is an object. In the example
class diagram, if one starts in the context of a Company, that is, self is an in-
stance of Company, one can write:

context Company
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty()

In the first invariant, self.manager is a Person, because the multiplicity
of the association is one. In the second invariant, self.employee will evaluate
in a Set(Person). When the association on the class diagram is adorned with
{ordered}, the navigation results in a Sequence.

When a rolename is missing at one of the ends of an association, the name of
the type at the association end, starting with a lowercase character, is used as the
rolename. If this results in an ambiguity, the rolename is mandatory. This is the
case with unnamed rolenames in reflexive associations. If the rolename is am-
biguous, then it cannot be used in OCL.

16

A single object can be also used as a singleton set. The usage as a set is done
through the arrow followed by a property of Set. This is shown in the following
example:

context Company inv: self.manager->size() = 1
The sub-expression self.manager is used as a Set, because the arrow is

used to access the size property on Set.
In the case of an optional (0..1 multiplicity) association, it is especially useful

to check whether there is an object or not when navigating the association. In the
example we can write:

context Person inv: self.wife->notEmpty() implies
 self.wife.sex = Sex::female

4. IMPERATIVE EXTENSION OF OCL

In addition to the purposes of OCL, IOCL also serves to describe methods updat-
ing the state. Being an imperative extension of OCL, IOCL is designed to fill the
gap between OCL, which is an unexecutable specification language, and a pro-
gramming language. Thus, an IOCL specification is absolutely formal just like an
OCL specification, and is executable like a program. One can consider IOCL as
an abstract programming language designed to support UML class diagrams. An
IOCL compiler converts such a diagram into executable code.

Imperative extensions of OCL deal with updateable properties, which are at-
tributes and association ends. An update of a property results in an update of the
state. Operations and methods updating the state (i.e., producing a side effect) are
called mutators. Thus, a mutator is one of:

• an Operation with isQuery being false,
• a Method with isQuery being false.

A mutator sharing its name with the name of its class is called a constructor.

4.1. Transition rules

A transition rule is used for the specification of a mutator. The rule is indicated in
a specification by label rule before the actual rule:

context Typename::OpName(param1: Type1, ...): ReturnType
pre: param1 > ...
rule: transtionRule

The name self can be used in the rule referring to the object calling the op-
eration being specified. Using the dot notation, it is followed by the name of the
property being updated.

17

There are typed and untyped transition rules. If the interpretation of a typed
transition rule should produce a result of some type T, the transition rule is called
a transition term of type T.

4.2. Basic transition rules

Basic transition rules are mutator call, object creation instruction, update in-
struction, collection update, and skip instruction.

Mutator call. If p(T1, ..., Tn) is a mutator declaration in a class T ,
obj an expression of type T , and t1, ..., tn expressions of respective
types T1, ..., Tn, then obj.p(t1, ..., tn) is a transition rule called
a mutator call.

If p(T1 , ..., Tn):T’ is a mutator declaration in a class T, obj an
expression of type T, and t1, ..., tn expressions of respective types T1,
..., Tn, then obj.p(t1, ..., tn) is a transition term of type T’ called
a mutator call.

Both kinds of rule are interpreted by the execution of the corresponding
method with obj passed to it as an extra argument.

Object creation instruction. If C is a class name, then oclNew C is a tran-
sition term of type C whose interpretation creates a new object with undefined
attributes and produces a reference to it. If C(T1, ..., Tn) is a constructor
declaration in class C and t1, ..., tn expressions of respective types T1,
..., Tn, then oclNew C(t1, ..., tn) is a transition term of type C
whose interpretation creates a new object initialized by the constructor.

Update instructions. Let at and at1 be updateable properties of type T and
t either an expression of type T or a transition term of type T. Then

at := t and at1 := undef
are transition rules called update instructions.

Interpretation 1. If A is a state and t an expression of type T, then
at = t in the new state if t is defined in A,
at is undefined if t in not defined in A,
at1 is undefined in the new state.

Examples. In the context of Person, the execution of the transition rule
age := age + 1

will transform a state A into a state B so that the value of age will be increased by
one. A transition rule

age := undef

will make age undefined in the new state.
The above examples are respectively equivalent to the following ones:

18

self.age := self.age + 1
self.age := undef

Interpretation 2.
If A is a state and t a transition term of type T, then
1) t is first evaluated in state A, producing a state B, and then this state is

updated by setting at to b where b is the result produced by the evaluation of t.
2) at is undefined if t is not defined in A.

Collection update. If c is an updateable collection and e an expression, then
 c -> include(e),
 c -> delete(e),
 c -> replace(e)

are transition rules called collection updates.
Interpretation. The rules are respectively equivalent to the following update

instructions:
 c := c -> including(e),
 c := c -> reject(e),
 c := c -> collect(e)

with the exception that c is evaluated once. See examples on pp. 24–26.
Skip instruction. The skip instruction does not change the state update.

4.3. Transition rule constructors

Complex transition rules are constructed recursively from basic transition rules by
means of several rule constructors, e.g., sequence constructor, set constructor,
condition constructor, guarded update, loop constructor and block.

Sequence constructor. If R1, R2, ..., Rn are transition rules and t an
expression of type T, then

seq R1, R2, ..., Rn end and
seq R1, R2, ..., Rn result = t end

are, respectively, a transition rule and a transition term of type T called a se-
quence of transition rules.

Interpretation. The component rules are executed sequentially so that the
rule Ri+1 is executed in the state produced by the rule Ri. If there is a resulting
expression t, it is evaluated in the final state. See examples on pp. 25–27.

The set constructor. If R1,..., Rn are transition rules and t an expres-
sion of type T, then

set R1, ..., Rn end and
set R1, ..., Rn result = t end

are, respectively, a transition rule and a transition term of type T called a set of
transition rules.

19

Interpretation. The component rules are executed in parallel in the same
state and the results are united if they are consistent (i.e., if there is no update of
the same property by different values). If there is a resulting expression t, it is
evaluated in the initial state.

Example. The mutator hireEmployee in the class Company can be specified
as follows:

context Company::hireEmployee(p: Person)
rule: set employee - >include(p),

stockprice := stockprice + 10
end

The guarded update. The guarded update is a transition rule of the form
if g then R, where g is a Boolean expression and R is a transition rule.

Interpretation. Rule R is executed if g is evaluated to true and nothing is
done in the opposite case.

The conditional constructor. If k is a natural number, g0, ..., gk Boo-
lean expressions, and R0, ..., Rk transition rules, then the following expres-
sion is a transition rule called a conditional transition rule:

if g0 then R0
elseif g1 then R1
...
elseif gk then Rk
endif

If gk evaluates to true, then the last elseif clause can be replaced with
else Rk.

Interpretation. The expressions g0, …, gk are evaluated one after an-
other and Ri for the first gi evaluated to true is executed. If all g0, …, gk
are evaluated to false, no effect is produced.

The loop constructors. The guarded update together with the sequence con-
structor enables one to define some loop constructors. If R is a transition rule, g a
Boolean expression, i an identifier, e1 and e2 expressions of type Integer
not containing i, and C a collection, then

while g do R,
repeat R until g and
for i in C do R

are transition rules called loops.
Interpretation. In the first rule, R is executed repeatedly while g is true; if

it is false at the beginning, R is not executed at all. In the second rule, R is exe-
cuted repeatedly until g is true; if it is false at the beginning, R is executed
once. In the third case, the loop parameter i runs over all elements of the collec-
tion C and the rule R is executed for each element assigned to i.

20

The block. If x is an identifier, t either an expression or a transition term of
type T, and R a transition rule or transition term of type T1, then

let x = t in R

is, depending on R, either a transition rule or transition term of type T1, called a
block.

Interpretation. Evaluate t, then extend the state with a variable x of type T
initialized with the value of t, execute R and delete x from the state. See examples
on pp. 24–25.

4.4. Error handling

The invariant, precondition, or postcondition in an operation specification can
have the optional clause else throwExpression where throwExpression is
throw expression. In this case, when the operation is called within a transi-
tion rule and one of these fails, then throwExpression is executed, which trans-
fers control to the catch clause of the closest enclosing try-block whose parameter
type matches the type of the throwExpression. If the else clause is omitted or
there is no matching catch clause, the execution of the operation is stopped in a
predetermined way.

The try-block is defined as follows: if R is a rule, x1, ..., xn identifiers,
T1, ..., Tn type names, and R1, ..., Rn rules, then

try R catch parameterDeclaration1 R1; ...
catch parameterDeclarationN Rn

end,

where parameterDeclarationI, I = 1, ..., n , is one of xi : Ti or
Ti or ''...'', is a rule called try-block.

Interpretation. If during the execution of R the throwExpression of type
Tj is executed, the control passes to the first catch clause with the parameter
type Tj or to the catch clause with the parameter declaration ''...'' if any, and
the corresponding Rj is executed. If the parameter declaration has the form x:
T, then the value of the throwExpression is assigned to x. If no matching
catch clause is found, the control passes to the enclosing try-block. If no match-
ing catch clause is found, the execution of the block is also stopped in some
predetermined way. See an example on p. 27.

21

5. EXPERIMENT

5.1. Class diagram

The class diagram used in the experiment is presented in Fig. 2. Because of the
layout limitations, only class names are indicated for each class in the diagram.
The declarations of class components are presented in the subsequent figures.

Fig. 2. The class diagram of the experiment

22

Fig. 3. Classes Category, Item, Comment, and Bid

This simple model contains entities that are likely to be found in any typical
auction system: Category, Item, Bid, Comment, and User. In any store,
similar goods are categorized by type and grouped into sections and onto shelves.
Clearly, our auction catalog requires some kind of hierarchy of item categories.
An auction consists of a sequence of bids. One particular bid is a winning bid.

A web of trust is an essential feature of an online auction site. The web of
trustallows users serves for building a reputation for trustworthiness (or untrust-
worthiness). Buyers can create comments about sellers (and vice versa), and the
comments are visible to all other users.

The status of a new Item or Bid object is set to 0, which indicates the active
status. During the program execution, we can ban an Item instance (status field is

23

set to 1) and cancel a Bid instance (status field is set to 1). User details include
name, login, address, email address, and billing information.

Fig. 4. Class User and associated classes

24

Fig. 5. Class BillingDetails and associated classes

Each item may be auctioned only once, so we don’t need to make Item dis-
tinct from the auction entities. Instead, we have a single auction item entity named
Item. Thus, Bid is associated directly with Item. Users can write comments
about other users only in the context of an auction; hence the association between
Item and Comment. The Address information of a User is modeled as a sepa-
rate class, even though the User may have only one Address. User contains two
subclasses Visitor and Administrator.

We do allow the user to have multiple BillingDetails. The various billing
strategies are represented as subclasses of an abstract class.

A Category might be nested inside another Category. This is expressed by
a recursive association, from the Category entity to itself. Note that a single

Category may have multiple child categories but at most one parent cate-
gory.

25

Each Item belongs to at least one Category. The entities in a domain
model should encapsulate state and behavior.

5.2. Specification of the methods

context User::createBid(itemId: int, bid : Bid)
pre itemIdOk: itemId > 0
pre itemExist: self.items->select(v:Item | id = itemId)->

 notEmpty()
pre bidOk: def bid
pre bidAmountOk: bid.amount > 0
pre statusActive: bid.status = 0
rule : let newBid = oclNew Bid(bid) in

 set self.items->any(v: Item | v.id = itemId).bids->
include(newBid),

 self.bids->include(newBid)
 end

The createBid method creates a new Bid with a specified itemId. The
method preconditions check that the itemId and bid.amount are positive, an
Item with the specified itemId exists, bid is defined and bid.status is zero
(i.e., it is active). The rule clause of the createBid method indicates the crea-
tion of a new Bid instance and simultaneous insertion of the created newBid ob-
ject into collections self.bids and self.items.bids.

context User::createItem(item: Item)
pre itemOk: def item
pre itemPriceOk: item.initialPrice > 0
pre itemNameOk: item.name <> null
rule : let newItem = oclNew Item(item) in

set self.items->include(newItem),
 self.sells->include(newItem)
end

The createItem method creates a new Item. The method preconditions check
that item is defined, item.name is not null and item.initialPrice is
positive. The rule clause of the createItem method indicates the creation of a
new Item instance and simultaneous insertion of the created newItem object into
collections self.items and self.sells.

context User::createComment(comment: Comment, itemId : int)
pre itemIdOk: itemId > 0
pre commentOk: def comment
pre commentTextOk: comment.text <> null
pre commentRatingOk: comment.rating > 0

26

rule : let newComment = oclNew Comment(comment) in
 set newComment.about := self.items->any(v: Item | v.id =
itemId),
 self.comments->include(newComment)
 end

The createComment method creates a new Comment with a specified itemId.
The method preconditions check that comment is defined, comment.text is
not null and itemId and comment.rating are positive. The rule clause of the
method indicates the creation of a new Comment instance, association of created
Comment instance with specified by itemId Item object and insertion of the cre-
ated newComment object into collection self.comments.

context User::cancelBid(bidId : int)
pre bidOk: bidId > 0
rule : self.bids->any(v: Bid | v.id = bidId).status := 1

The cancelBid method cancels the Bid with the specified bidId. The method
precondition checks that bidId is positive. The rule clause of the method indi-
cates the setting of the cancel status (value 1).

context User::getAddress(): Address
post : result = self.address

The getAddress method retrieves the address associated with a user.

context Administrator::createCategory(category: Category)
pre categoryOk: def category
pre categoryNameOk: category.name <> null
rule : let newCategory = oclNew Category(category) in

self.categories->include(newCategory)

The createCategory method creates a new Category. The method precondition
checks that category is defined and category.name is not null. The rule
clause of the method indicates the creation of a new Category instance and inser-
tion of the created newCategory object into the collection
self.categories.

context Administrator::deleteCategory(categoryId: int)
pre categoryIdOk: categoryId > 0

rule : self.categories->delete(self.categories->
select(v: Category | v.id = categoryId))

The deleteCategory method deletes a Category with a specified categoryId.
The method precondition checks that categoryId is positive. The rule clause
of the method contains deletion of the reference of the object specified by cate-
goryId from the collection of Category instances self.categories.

27

context Administrator::banItem(itemId: int)
pre itemIdOk: itemId > 0
rule : set

self.items->any(v:Item | v.id = itemId).status := 1,
for iBid : Bid in

self.items->any(v: Item | v.id = itemId).bids
do iBid.status : = 1

 end

The banItem method sets the inactive status for an Item and the cancel status for
the associated Bid objects. The method precondition checks that itemId is posi-
tive. The rule clause of the method indicates the setting of the inactive status
(value 1) and the cancel status for the associated Bid objects (value 1).

context Administrator::deleteComment(commentId: int)
pre commentIdOk: commentId > 0

rule : self.comments->delete(self.comments->
select(v: Comment | v.id = commentId))

The deleteComment method deletes a Comment with a specified commentId.
The method precondition checks that commentId is positive. The rule clause of
the method contains deletion of the reference of the object specified by commen-
tId from the collection of Comment instances self.comments.

context BillingDetails inv: self.balance > -1

This invariant checks that the balance field of the BillingDetails instance
is always non-negative.

context BillingDetails::createPayment(sum:float,today:Date)
pre sumOk: sum > 0
pre fundsOk: self.balance > sum

rule : self.balance := self.balance - sum

The createPayment method creates a Payment with a specified sum. The
method preconditions check that sum and self.balance are positive.

context BillingDetails::getBank():Bank
post : result = self.bank

The getBank method retrieves a Bank data.

context BankAccount::addInterest():float
pre balanceOk: self.balance > 0
rule : seq self.balance := self.balance + self.balance *
self.bankInterest
 result = self.balance
 end

28

The addInterest method adds interest to a BankAccount and returns resulted
balance. Method preconditions checks that self.balance is positive.

context CreditCard::checkExpDate(today: Date)
pre : self.expDate > today
else throw oclNew CreditCardExpiredException()

The checkExpDate method checks a CreditCard expiration date and throws the
exception CreditCardExpiredException if it is expired.

context CreditCard::createPayment(sum: float, today: Date)
pre sumOk: sum > 0
pre fundsOk: self.balance > sum

rule : try seq

self.checkExpDate(today),
 self.balance := self.balance – sum

 end
 catch CreditCardExpiredException self.invalidateCard()
 end

The createPayment method is an overridden method of the BillingDetails
class. The method preconditions check that sum and self.balance are positive.
The rule clause indicates the method checks the CreditCard expiration date and
either creates a payment or invalidate the card if the method call
self.checkExpDate(today) throws the exception CreditCardExpired-
Exception.

context CreditCard::invalidateCard()
rule : self.invalid := true

The invalidateCard method sets the value of the field self.invalid to
true.

context Category::getItems():Collection
post : result = self.items

The getItems method retrieves all items associated with a Category.

6. CONCLUSION

An extension of the object constraint language OCL by imperative facilities is
proposed in the paper. This extension permits an adequate specification of state-
updating methods of a class. The facilities are tested by an experimental specifi-
cation of a representative example class diagram including 13 classes. The ex-

29

periment has covered all the proposed facilities and shown that they provide a
simple and powerful means for method specification. The next step of this re-
search project is to construct a compiler translating a specification into an execu-
table code with the aim of prototyping a specified program system.

REFERENCES

[1] OMG UML 1.5 – Final Adopted Specification. OMG, March 2003. — Available
electronically from http://www.omg.org/uml.

[2] Brazhnik S., Zamulin A.. IOCL — an Imperative OCL extension. Working draft,
available electronically from
http://www.iis.nsk.su/persons/zamulin/iocl_specification.doc

[3] Gurevich Y.. May 1997 Draft of the ASM Guide. — Available electronically from
http://www.eecs.umich.edu/gasm/.

С. А. Бражник, А. В. Замулин

ИМПЕРАТИВНОЕ РАСШИРЕНИЕ
ЯЗЫКА СПЕЦИФИКАЦИИ ОБЪЕКТОВ OCL

Препринт
123

Рукопись поступила в редакцию 27.04.05
Редактор Т.М. Бульонкова

Подписано в печать 04.07.05
Формат бумаги 60×84 1/16 Объем 1.7 уч.-изд.л., 1.9 п.л.
Тираж 60 экз.

ЗАО РИЦ «Прайс-курьер»
630090, г. Новосибирск, пр. Акад. Лаврентьева, 6, тел. (383) 330-72-02

