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General methods for problem solving are objects of study in artificial
intelligence. This work describes subdefinite models as a framework for
solving constraint satisfaction problems. Such problems arise in many fields
of science and engineering. The use of the method of constraint propagation
in subdefinite models makes it possible to estimate the set of all solutions
of such a problem.

Foundations of subdefinite models are given in the paper. The notion of
subdefinite extension of a many-sorted model is proposed, and the types of
such extensions are discussed. Both denotational and operational seman-
tics of constraint propagation in subdefined models are defined and their
equivalence is proved.
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HAYKU ¥ TeXHUKU. Vcro/ib30BaHne MeToa pacipoCTPpaHEHs OTPDAHNIEHUHA
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1. INTRODUCTION

The constraint programming (CP) paradigm is one of the most fruitful
and commonly used in the present-day computer science [1-3]. This paper
is devoted to the description of subdefinite models apparatus as one of the
varieties of the CP approach.

Subdefiniteness allows us to use fruitfully all reliable data concerning
real-world objects, including uncertain, noisy, incomplete and imprecise
data. The notion of sudefiniteness was proposed by A.S. Narin’yani at
the beginning of the 1980s [4]. He has developed a formal apparatus which
extends the set theory and allows the representation of partially known
(subdefinite) sets as well as automatic solution of set-theoretic problems
incorporating subdefinite sets. This idea has been extended to a formal ap-
paratus of active data types, which allows us to build subdefinite extensions
of a wider class of objects, concepts, and events [5].

Given wvariables, their domains, and constraint formulae, one can define
the Constraint Satisfaction Problem (CSP) as a problem of finding values of
all variables in their domains (a solution) satisfying the constraint formulae.
Obviously, there exist algorithms to find solutions of a very small part of
such problems even for well known domains and constraints, and only a few
existing algorithms are effective. Finding of all solutions is a more difficult
task. Often one would like to get some estimation of a set of all solutions
of a given problem before starting the search for a solution (to reduce the
domains of variables) using some algorithm (in reduced domains). The
reduction of domains can be done by means of a constraint propagation
algorithm. The algorithm for finite domains and binary constraints has
been initially proposed in [1] and then has been generalized for integers [2,3],
reals [6,7] and mixed (finite, integer, real) computation domains [8-10].

This work describes the apparatus of subdefinite models and their appli-
cation to constraint satisfaction in arbitrary domains. We regard the CSP as
a first-order formula of a given many-sorted signature whose variables have
existentional quantification and all atoms are joined with conjunctions. So-
lutions of this CSP are witnesses of a realization of this formula in the given
many-sorted model of the same signature. The notion of a subdefinite ex-
tension of a domain, functions and predicates over it allows us to regard
a constraint propagation algorithm as a variety of methods of successive
approximation. Its denotational semantics can be expressed in terms of the
greatest fixed point of some mappings in subdefinite extensions of domains.
Operational semantics is defined in terms of an abstract machine with states
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and transition rules. The correctness and the equivalence of these semantics
are proved. Several types of subdefinite extensions are proposed and their
properties are explored.

The work is organized as follows. In Section 2, the basic notions of
many-sorted models are presented. A subdefinite extension of the models is
described in Section 3. Denotational semantics of constraint propagation in
subdefinite models (in terms of the greatest fixed point of the family of some
mappings) is defined in Section 4. Section 5 is devoted to the definition of
operational semantics of constraint propagation. In Section 6, we examine
the types of such subdefinite extensions. Finally, Section 7 concludes the

paper.
2. BASIC NOTIONS

A traditional problem of subdefinite models is to find all solutions of
an existential conjunction in a sorted model. These models completely
correspond to models from [11]. To describe denotational semantics of this
problem, we should specify a subdefinite extension of the corresponding
sorted model. We briefly redefine basic definitions of sorted models.

Definition 1. A many-sorted signature is a triple ¥ = (S, F, P) where

e S is a set of sorts (elements of S are names of different domains);
we denote the set of all chains of elements of S (including an empty
chain, \) by S*,i.e. S* ={A\} USUS?U..., we also define
St =5"\{A}

e F'is an (S*x.S)-indexed family of sets of operators (function symbols)
(i.e. F={Fys|we S* seS}); Fis is called a set of constants of
the sort s;

e P={P, | we ST} is a family of predicate symbols containing the
predicate symbol of equality, = € Ps,, for each sort s € S.

Example 1. Consider the signature ¥ = (S, F!, P!). Let real € S,
{+’ *} c Frleal real, real’ {:7 S} c Prleal real”

Definition 2. For a many-sorted signature ¥ = (S, F, P), a many-sorted
Y-model M is a first-order structure consisting of:

e a family of carriers sM for all s € S (for w = s ..., we denote by

w™ the Cartesian product s} x ... x sM),
e a family of functions fM : wM — sM for all f € F, 5, if w = A, then
M g gM

e a family of predicates p™ C wM for all p € P,, the predicate of
equality =M C (ss)M is {(a,a) | a € sM} for all s € S.
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Example 2. Consider ¥!-model R (the many-sorted signature X! was
defined in Example 1), where real™ is the set of all real numbers, +7 is the
operation of real addition, *™ is the real multiplication, =™ is the equality,
and <™ is the relation "less or equal than" between two real numbers.

Definition 3. Let ¥ = (S, F, P) be a many-sorted signature and X
be an S-sorted set (of wariables) such that Xy N Xgv = () for s" # s”,
and X, N F\s = 0 for any s € S. We define X(X)-terms as the smallest
S-indexed set Tx(X), such that

o X, and Fy s C Tx(X); for all s € S;
oif fe F,sandt; € Tn(X)s, for w=s1...s, € ST, then the string
f(t1,...,tn) belongs to Tx(X)s.
We define X(X)-atoms as expressions of the form p(ty,...,t,), where
t; €Ts(X)s,, p€E Py, w=51...5, €ST.

Definition 4. Let ¥ = (S, F, P) be a many-sorted signature, X be an
S-sorted set of variables, M be a ¥-model. Any S-sorted function® v : X —
M is called an estimate (or valuation) of variables X in Y-model M. An
extension of the estimate v to the set Tx(X) is a function v* : Tx(X) —» M
defined as follows. For ¢t € T (X)s, s € S:

vs (), if t =z for any z € X,
) M, if t = c for any c € F) s,
s M (t1), ... 08 (t), ift=f(t1,...,tn) for f € Fy s,

51 ' Usy,
W=81...8, € S+,t7; S TE(X)S,;-

Definition 5. Given a many-sorted signature ¥ = (S, F, P) and an
S-sorted set of variables X, we define a X(X)-ezistential conjunction (of
atoms) to be an existential formula of the form

(3X) Ap,..., An

where Aj,..., A, are X(X)-atoms. We say that a Y-model M realizes
this conjunction (or that this conjunction is realized in M), if there ex-
ists an estimate v : X — M (called a witness), such that for each atom

p(tla"'vtk) € {Al,...,An}

(Uzl (tl)v s 7U:k (tk)) € pM

*An S-sorted function v : X — M is actually a family of mappings
v={vs: Xs — sM|s € S}.




where p € Py, w=351...5, € ST, and t; € Tx(X)s,, i = 1,..., k.

We will only deal with conjunctions in a special form called constraint
satisfaction problem.

Definition 6. Given a many-sorted signature ¥ = (S, F, P) and an
S-sorted set of variables X, we define X(X)-constraint as a X(X)-atom
having one of the following forms:

e p(z1,...,x,), where p € Py, w = 81...8, € ST, 2; € X,, for
i=1,...,n,n >0, and all the variables z1,...,x, are different;

o f(z1,...,xn) =y, where f € Fiy s, w=51...5, € S*, s € S,y € X,
z; € Xg, fori =1,...,n, n > 0, and all the variables z1,...,2,,y

are different.
A X (X)-constraint satisfaction problem, or CSP is a X(X)-existential con-
junction, all its atoms are constraints.

Proposition 1. Any ¥(X)-existential conjunction

can be transformed in finitely many steps into an equivalent (X U Y)-
constraint satisfaction problem!

(ElXUY) Blv"'vBerk (2)

where Y is an S-sorted set of variables which does not intersect X. The
stated equivalence has the following meaning: for any 3-model M and a
witness v : X — M of the realization of (1) in M, there exists a witness
v XUY — M of the realization of (2) in M, such that v'|x = v and, for
any witness u : X UY — M of the realization of (2) in M, the S-sorted
function u|x is a witness of the realization of (1).

Before proving the proposition, let us proceed with an example.

Example 3. Let X be an Sl-sorted set of variables (S! as defined
in Example 1), where x,y,z,w € Xpcq. Consider the following ¥1(X)-
conjunction:

3X) z*xy+z<w.

The equivalent ¥!(X U Y )-constraint satisfaction problem is:

BXUY) zxy=t;, t1+z=ts, t2<uw,

TThe union of two S-sorted sets A and B is defined as follows:
AUB={A;UBs|s€S}



where tq,ts € Yyeq. It is equivalent to the first one in the sense of Proposi-
tion 1.

Proof. The meaning of the transformation from (1) to (2) is the recur-
sive reduction of terms. If (1) has an atom p(t1,...,t¢,), then (2) has an
atom p(y1,...,yn) and all the atoms from the sets Eq(y;,t;) (i =1,...,n),
where Eq(y,t) can be recursively defined as

Eq(y,z) = {y=a}forallse S,z e X, yeY,
Eq(y,c) {y=c}forallce F\,,s€S,yeY,.
Eq(y, f(t1,...,tn)) {Eq(y1.t1), - Eqn,tn), f(y1, - yn) = y}
forall f € Fs, s,,5,51,---,5n,8 €S,y €Yy,
where y; € Ys,.

We assume that each variable from Y has a single occurence in the atoms
of (2). This recursive transformation can be performed in finitely many
steps and its result is a (X U Y)-existential conjunction (2). Consider
an arbitrary Y-model M. Let v : X — M be a witness of (1) in M, and
v* 1 Tx(X) — M Dbe its extension to the set of X(X)-terms. If we have
added the atoms from Eq(y,t) for y € Y, t € Tx(X)s to (2), then we define
vi(y) = vi(t). For any s € S, x € X, we define v (z) = vs(x). It is easy to
see that v’ is a witness of (2). Let now u: X UY — M be a witness of (2).
We can reverse our transformation (i. e. perform a transformation from (2)

to (1)) and see that u|x will be a witness of the realization of (1).

3. SUBDEFINITE EXTENSIONS

An estimate (see Definition 2) evaluates each variable with a single value
from the universe of its sort. A fruitful idea is the valuation of variables
with sets of values rather than single values. The theoretical framework
which allows such valuation is introduced in this section.

Definition 7. Let ¥ = (S, F, P) be a many-sorted signature, and M
be a X-model. A subdefinite extension (SD-extension) of a ¥-model M is a
Y-model *M defined as follows:

e every carrier s M| s € S, satisfies the following conditions:
— sM ig a finite set of subsets of s ;
-0e sM ;
Mg g™,

—ifa; € 5™ and as € s™, then a; Nag € s M.



The elements of s™ will be called subdefinite values, or SD-values.
Let w=51...5, € 5T. We will also consider each element

a=(a1,...,0) ew™

(remember that w™ = s;™ x ... x 5,M) as the set

a:alx...xaanM.

The properties of subdefinite extension guarantee unique representa-
tion, or approzimation of any subset ¢ C w™ (which will be denoted
by w™M[¢] € w™) in the SD-extension *M, namely:

WM = () a (3)

¢Cacw™

M s the minimal element

Thus, the representation of the set & in w"
of the w™ which contains £.
o the operations of the model *M are defined as follows. For f € F, ,,

where w = s1...8, € S*,s€ S

F My, .. o) =s M{fM(ay,. .. an) | a1 € ay,... an € ay}].
(4)
Note that f™ is a total function although f™ can be partial.
e the predicates of the model *M are defined as follows. For p € P,
where w =s1...8, € ST, and a € w™

aep™Miff a =wManpM]. (5)
We also define predicates f ™ C w™ x s ™ for each f € F, s, where

w=S5...5, € ST, s € S as follows. Let fM C wM x sM be the

graph of the function fM : w™ — sM:

fM = {(al,...,an,an+1) cwM x M | fM(al,..~,an) = anJrl}.
Then for a € w™ x sM
ae fMiff = (ws)*M[a N M.

From now, we will regard a X(X)-constraint f(z1,...,z,) =y as a
constraint f(x1,...,2,,y), i. e. we will use f as a predicate symbol.
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Note that the definition of the predicate of equality in an SD-extension
of a model is correct, i. e. the following proposition holds.

Proposition 2. Let ¥ = (S, F, P) be a many-sorted signature, *M be an
SD-extension of a X-model M, a1, as € sM seS. Then ay =™ ay holds
iff a1 and ag are the same set.

Proof. Let a; =™ a, holds. From (5) we have

a1 CsM{a; € sM| (Faz € az) a1 =M ap}] = s M[ay] = ay
(the last is true since ap € s ™), and
s C S*M[{ag e sM | (Fa1 € 1) a1 =M as}] = S*M[Oél] =,
i. e. 1 = g as subsets of s. Conversely, let oy = a. Then
o Cag=sM{a; € sM| (Bag € ) a1 =M an}],

and
M| 3a; € 1) a; =M as}],
i.e.a; =M ay holds.

The reason for such defininition of an SD-extension is the following.
The functions and the predicates over sets are approximations of ones over
single values. The result of an SD-extension of a function on some sets is
defined as the approximation of the set of all results of a function obtained
on combinations of single values from these sets. An SD-extension of a
predicate holds on some sets iff these sets are SD-consistent w.r.t. this
predicate in M. The notion of consistency was firstly proposed in [1] in the
following sense (we rewrite the definition of consistency in our terms).

Definition 8. Let ¥ = (S, F, P) be a many-sorted signature, M be a
Y-model, and p € Ps, . s, for s1,...,s, € S. Any sets of values

flgS{u, R fngsrjy

(of arguments of a predicate p™) are consistent w.r.t. pM™ iff for all
1=1,...,n and a; € & there exist

a1 €&, ..., a1 €&-1, aiy1 €&y, oo, A €&,

such that (ai,...,a,) € pM.
We extend the notion of consistency to SD-consistency as follows.
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Definition 9. Let ¥ = (S, F, P) be a many-sorted signature, *M be
an SD-extension of a ¥-model M, and p € Ps, . 5, for s1,...,s, € S. Any
SD-values
*M

aesM, .., an€s

are SD-consistent w.r.t. pM iff they are approximations of a consistent sets,
i. e. there exist
G Cst’, o, & Ty

such that &, ..., &, are consistent w.r.t. pM™, and SZM[&] = oy for
1=1,...,n.
We want to prove that a predicate holds in an SD-extension of a model
iff their arguments are SD-consistent. Let us begin with the following
Proposition 3. Let ¥ = (S, F, P) be a many-sorted signature, M be
a Y-model, *M be its SD-extension, w = s1...5, € ST, £ C wM. For
i=1,...,n define m;(§) as i-th projection of £, i. e.

(&) = {a; € sM | (Vk #9)(3ax, € s2) (a1,...,a,) € £}
Then the following assertion holds:
wMg] = M (€)] x .. x 5, [ma (€)].

Proof. Let o € w™. Remember that o = (A1, o ) = a1 X ... X ay
with a; € s;™ for i =1,...,n. Let us prove that

ECaiff m(€) x...xm(€) C a.

The second assertion is a consequence of the first one since the projection is
a monotone mapping (w.r.t. relation C over sets) and 71 () X ... X m, () =
=1 X ... X «a, = a. Let the second assertion holds. Since

ECm(E) x ... xmy(E),

we have £ C a.

Consequently,
wM[5]= ﬂ o= ﬂ a1 X ... Xy =
ECacw™ (€)X .o X (§)Cay X... Xy EW™M
= ﬂ o X ... X m an | =
wl(E)Q(XlESIM 7 (§) Can €s;M
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= s Mm(&)] x ... x sM[m,(€)].

The following proposition is a reformulation of an SD-extension of a
predicate.

Proposition 4. Let 3 = (S, F, P) be a many-sorted signature, M be a
Y-model, *M be an SD-extension of M, p € P, for w = s1...5, € ST,

a; € sZM, i=1,...,n. The following assertions are equivalent:
®ay,...,a, are SD-consistent w.r.t. pM,
o (ay,...,an) €p™M.
Proof. Let the first assertion hold. Then there exist & C s{VI, o€, C s,ff’
which are consistent w.r.t. pM, i e foralli=1,...,n,a; € & and k # i
there exists ap € &, such that (a1,...,a,) € pM. We can rewrite this
proposition as follows: for any i =1,...,n

fi =7T7;(€1 X ... X fnﬂpM),

Since ;(...) and s;M[...] are monotone (w.r.t. relation C) mappings and
& Cay fori=1,...,n, the following inclusions hold.
a; =sME] = sMmi x .. x&npM)] C
C s;Mmi(aq x ... xap, NpM)] C
- s;Mmi(o X ... X )] = s;Y o] = a,
i,e.fori=1,...,n

*

o = siM[m(al X ... X Qp ﬁpM)].
We can rewrite it (see Proposition 3) as follows:

a=wanp],

for o« = (a1,...,an) = a1 X ... X ap.
Let the second assertion hold. Define & C s, ... ¢, C sM as follows:
G=milarx...xa,NpM), i=1,....,n
Obviously (see Proposition 3), s;M[¢;] = ; for i = 1,...,n. We have

a1x...xanﬂngglx...xgngal><...><ozn,
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therefore
& x...xfnmpMzal x...xanﬁpM,

ie.fori=1,...,n
{i:m(& X...Xgnﬁpju).

This means that

(Vi=1,...,n)(Ya; € &)(Vk # 1)Par € &) (a1,...,a,) € p™.

Example 4. Consider the SD-extension ZR of Y!-model R (X! as
defined in Example 1, and R as defined in Example 2). Let Ry be a finite
subset of the set of all real numbers with two additional elements: —oc and
+00. An Rgy-bounded interval is a set

x = [x,X] = {z € real™® | x < x < X},

where x,X € Ry. The set of all Ry-bounded intervals is finite and closed
under intersection:

XNy = [max(x,y), min(X,y)].

It is easy to see that real® = [~o0, +00], and @) = [z, 9] for any = > y. Let
real?™ be the set of all Ry-bounded intervals (this set satisfies all properties
of a definition of an SD-extension). For any real x we define 2+ and 2~ € Ry
as follows:
rT = inf{y€ Ry |z <y},
T~ = sup{y e Ry |y <z}

Let R C real™, then real?®[R] = [(inf R)~, (sup R)*]. Consider the func-
tions +ZR IR : real real™™ — real”™. We have (see (4))

x +1R y = [(5 +R X)i’ (i +R y)Jr]’
xRy = min(x+"y)", (x«"y) ", &y, (®«*y)7),
max((x +* y)*, (x % y) T, (X" y)t, & y))

The predicates are defined as follows (see (5)):

R

ol

x=""y iff an

[
Il
<

d R
R d R

<l

x <™y iff

[
IN
<
X
IA

ar
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The definitions of +Z%, IR =IR and <I® (i = 1,2) are left to a reader.

Estimates of variables in a subdefinite extension of a model have some
remarkable properties. We discuss them in the following

Definition 10. Given a many-sorted signature ¥ = (S, F, P), a ¥-mo-
del M, its SD-extension, a X-model *M, and an S-sorted set of variables
X, an estimate of variables of X in *M is called a subdefinite estimate (an
SD-estimate).

It is easy to see that the set of SD-estimates X — *M is a partially
ordered set (X — *M,C) with ¢ C o iff ¢ps(x) C s(z) for any s € S,
z € Xs. If ¢ Copand ¥ C ¢, then ¢ = 1. Obviously, the greatest element of
the set of all estimates is A : X — *M, such that \,(z) = sM for all s € S,
z € X;.

Forv:X — M and ¢ : X — *M we will write v € ¢ iff vs(2) € ¢s(x)
for all s € S, x € X,. Also, for ¢,v : X — *M, we define p N : X — *M
as (pN)s(x) = ¢s(z) Nps(x) for all s € S, z € X,.

We will apply the notion of SD-consistency to an SD-estimate. Let C
be a 3(X)-constraint in form p(xi,...,x,) (where p € Py, 5., x; € X,
for : = 1,...,n). An SD-estimate ¢ : X — *M is SD-consistent w.r.t. C
iff the SD-values ¢, (71),...,¢s, (7,) are consistent w.r.t. p™, i. e. (see
Proposition 4)

(¢81 (.231), SR (bsn (xn)) S p*M.

4. DENOTATIONAL SEMANTICS OF CONSTRAINT
PROPAGATION

In the sequel, we suppose a many-sorted signature ¥ = (S, F,P), a
Y (X)-constraint satisfaction problem (2), a ¥-model M and its SD-exten-
sion, a ¥-model *M to be given. Let us denote) by C the set of all atoms
(constraints) of (2.

A fundamental notion of constraint propagation in subdefinite models
is a notion of interpretation, or filtering of a constraint. The interpretation
of a constraint is a mapping on the set of SD-estimates X — *M. The
purpose of such a mapping is the filtering of those values of SD-estimate
of variables which are SD-consistent with the constraint. We regard an
SD-estimate of variables as a set of possible witnesses of the realization
of constraint satisfaction problem (2) in M. If SD-estimate contains some
estimates which are not witnesses of CSP, we try to exclude them from the
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SD-estimate by filtering of each constraint of CSP. The process of filterings
(which is called constraint propagation and will be discussed below) is very
similar to that of achieving local consistency proposed in [1]. The result of
the process is an SD-estimate, which is SD-consistent with each constraint
of CSP. In this section we define the result of the process in terms of the
greatest fixed point of such filterings, i. e. we define denotational semantics
of constraint propagation.
Definition 11. Given a ¥(X)-constraint C, we define a mapping

Io: (X - *M) - (X - *M)

(which will be called an interpretation, or filtering of C) as follows. For an
SD-estimate ¢ : X — *M
IC (¢) = 7%

where
Ly Co,
2. 1) is SD-consistent w.r.t. C,
3. ¢ is the maximal SD-estimate from those satisfying the properties 1
and 2.
Proposition 5. The above definition is correct, i. e. Ic(¢) is defined for
any ¢ : X — *M.
Proof. Let C = p(xy,...,2,) for p € Py, w = s1...5, € ST. Consider v
defined as follows:

Ys(xr) = ¢s(x) for all w € X\ {z1,...,2},8 €S,
1/)& (xl) S?w[ﬂ—i(qsm (xl) X...X ¢5n(xn) mpju)]’ i = ]-a sy T

To simplify notations, define

o = ((bsl (xl)a"'7¢8n(xn))’
B = (%1 (.231), s 7w8n (xﬂ))

We have # = w™[a N pM] (see Proposition 3). Since a Np™ C a and
w™].. ] is monotone w.r.t. set inclusion, 8 = w ™[aNpM] C w™M[a] = a.
Therefore, 1 C ¢.

We have aNp™ C w™[aNpM] = B C a. Therefore, aNp™ = gnpM,
and w M [BNpM] = wM[anpM] = B, i. e. B is SD-consistent w.r.t. p™ (see
Proposition 4). We have just proved that 1 is SD-consistent w.r.t. C.
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Let & C ¢ be an SD-consistent estimate. Define v; = 0, (x;) (for
i=1,...,n),and vy = (7,...,v). We have v C a, therefore

y=wMynpM CwManp] = 5.

Since 6(x) C ¢s(x) holds for all s € S and = € X, \ {x1,...,2,}, we can
finally say that 6 C .
The following proposition states the remarkable properties of a filtering.
Proposition 6. Each filtering Ic : (X — *M) — (X — *M) for C € C
satisfies the following conditions for all ¢, : X — *M :
1. correctness: ifv: X — M is a witness of (2) in M and vs(x) € ¢s(x)
foralls € S, x € X, then vs(x) € Ic(d)s(x),
2. contractance: Ic(¢) C ¢,
3. monotonicity: if ¢ C ¢ then Io(p) C Io(v),
4. idempotency: Ic(Ic(9)) = Ic (o).
Proof. Let C = p(z1,...,2,) for p € Py, w = s1...8, € ST. Let
a = (vs,(z1),...,0s, (z0)), @ = (¢, (x1), ..., 05, (7). We have a € pM
and a € «, consequently,

acanp" CwManp]=(Ic(d)s (21),..., Ic(9)s, (zn)).

Therefore, v € Ic(¢).

The mapping Ic(...) is monotone since the mappings ... N pM and
w™M][...] are monotone.

The properties of contractance and idempotency are simple consequences
of Definition 4.

The main result of this section is the following

Proposition 7. The following assertions are true:

1. There exists the mazximal estimate ¢*, which is SD-consistent w.r.t.
each C € C.

2. Ifv: X — M is a witness of the realization of CSP (2) in M, then
v E .

Proof.

1. It is easy to see that an SD-estimate ¢ is SD-consistent w.r.t. a
constraint C' iff Io(¢) = ¢, i. e. ¢ is a fixed point of the mapping I¢.
Therefore, ¢* (if it does exist) should be the maximal (the greatest)
common fixed point of the system of mappings Z = {Io | C € C}.
We will prove the existence of this fixed point. Let us consider a
mapping I = I, o...0I¢, (where {C1,...,C,} = C). Since each
filtering is a contractive mapping, we have A O I(\) D I?(\) D ...
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(recall that A is the greatest element of the set of all estimates).
Since all the carriers of ¥-model *M are finite sets, then the set of
all estimates of variables from X in *M is finite, too. Therefore,
there exists N > 0 such that IV(\) = IN*1()). Let ¢* = INV(\).
Obviously, ¢* is a common fixed point of Z. Let ¢ be a common
fixed point of Z. We have ¢ C X and ¢ = IV (¢) C IV (\) = ¢* (since
each filtering is a monotone mapping, see Proposition 6), i. e. ¢* is
the greatest common fixed point of 7.

2. For each witness v : X — M of the realization of CSP (2) in M we
have v € A. Since all filterings are correct (see Proposition 6), we
have v € ¢*.

The SD-estimate ¢* defined in the last proposition is a result of con-
straint propagation in subdefinite models. It defines denotational semantics
of the process. Proposition 7 suggests a method for computation of ¢*
(which is a kind of the method of successive approximations), but it is not
effective. Now we consider a better computation algorithm.

5. OPERATIONAL SEMANTICS

In this section we consider operational semantics of constraint propa-
gation in subdefinite models. The process will be described in terms of
states and transition rules of abstract machine, then we will prove its ter-
mination and correctness (equivalence of both denotational and operational
semantics). Informally, a state is an SD-estimate of variables with a set of
active constraints. We regard an SD-estimate as information about single
(precise) values of variables of CSP, i. e. information about all witnesses of
the realization of CSP in a model M. Going from state to state, we try to
get more information about the witnesses of CSP (to make an SD-estimate
more definite). The transitions between states are performed by filterings
of active constraints. Intitially, all constraints of CSP are active. After
filtering of constraint, it is passive, but all constraints containing variables
which have changed their SD-values during the filtering will be placed in
the set of active ones. The process is terminated when there are no active
constraints. Let us consider these notions formally.

Definition 12. Let ¥ = (S, F, P) be a many-sorted signature, X be
an S-sorted set of variables, C be a set of X(X)-constraints defining some
constraint satisfaction problem, and *M be an SD-extention of a Y¥-model
M. We define an engine for computing the greatest estimate of variables X
in *M, which is SD-consistent w.r.t. C, as an abstract machine with states
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and transition rules.

A state is a pair (¢,Q), where ¢ is an estimate of variables X in *M
and Q C C. We define transitions from a state to a state by means of the
binary relation - over the set of all states S = (X — *M) x P(C) as follows:
(¢, Q) F (v, R) iff

e Q#0,

e ) = Ic(¢) for some C € Q,

e R=Q\{CtU{C" e C| (Fx € varss(C")) ¢s(x) # ¥s(x)}, where

vars(C') is an S-sorted set of variables of a constraint C.

A state (), C), where A\;(z) = sM for all s € S, x € X, will be called an
initial state, any state (¢, () will be called a final state. We will also write
(¢,Q) F™ (¢, R), iff there exists a sequence of states (¢o,Qo), - - - (dn, Qn)
such that (¢,Q) = (¢0,Qo) F ... F (¢n,Qrn) = (¥, R). We will write
(¢,Q) F* (¢, R), iff there exists n > 0 such that (¢, Q) F" (¢, R).

At the beginning, the machine is at the state (A,C). At each state
(¢, @), the machine performs a nondeterministic choice of C' € @ and makes
a transition to the state (Ic(¢), R) (R is defined above). If Q = 0, the
machine stops.

The following assertion states the link between operational and denota-
tional semantics of constraint propagation in subdefinite models.

Proposition 8. In the terms defined above, the following assertions are
true:

1. There exists N > 0 such that if (\,C) FY (¢, R), then (¢, R) is the
final state, i. e. R = .
2. If (\,C) B* (¢,0), then ¢ is the greatest estimate of variables X in
*M, which is SD-consistent w.r.t. C, i. e. ¢ = p*.
Proof. If (¢,Q) - (¥, R), then ¢ C ¢ and if ¢ = ¢, then #R = #Q — 1
(since no variable has changed a value). Consider a sequence

()‘76) = (¢07Q0) F (¢17Q1) R (¢n7Qn) F.oo.

We have ¢pg 2 ¢1 2 ... D ¢p 2 .... If ¢y = ¢; for j > 4, then #Q; =
=#Q; — (j—i). If Q; #0, then j —i < #Q; < #C. And the longest
sequence A = ¢g > ¢y, > iy > ... > ¢, = p (where ps(z) = 0 for
all s € S, ¥ € X;) has the length L = 3 o> -+ I(s™), where I(s™)

is the length of the maximal decreasing sequence of elements from s :

sM = ag D a1 D... D ayy = set. Is is obvious that I(s™M) < #sM1

1The estimation #s ™ is very rough for I(s™), and we can define it more presicely
for SD-extensions discussed in the following section.
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Therefore there exists N > 0 such that if (A\,C) FV (¢, R), then R = (.
Moreover, we can estimate N as follows: N < #C x Y o> cx. I(s™M) <
SHCX Ypes Ypex, #s .

To prove the second assertion of the proposition, we note that if (A, C) -*
F* (¢,Q), then Ic(¢) = ¢ for all C € C\ Q (it can be easily proved
by induction over the length of the chain of transitions). Therefore, if
(A, C) H* (¢,0), then ¢ is a fixed point of all I (C € C). Since each of I
is a monotone mapping, then ¢ is the greatest fixed point (proposition 7),
i.e. ¢ =o*.

In the programming technology based on SD-models, one uses some
strategies to perform a choice at each state. One of the strategies is to
assign a (static or dynamic) priority to each constraint C' € C and to choose
a constraint with maximal priority from @ at state (¢, Q). Asynchronous
parallel processing of such transitions is normally used, but these aspects of
SD-models are out of the focus of this paper.

And now we can define the notion of a subdefinite model which we have
used above informally.

Definition 13. A subdefinite model (or briefly, SD-model) is a tuple

P=(%,X,0,M,*M,A),

where
e > = (S, F, P) is a many-sorted signature,
e X is an S-sorted set of variables,
e C is a X(X)-constraint satisfaction problem,
e M is a Y-model,
e *M is its SD-extension, and
e A is an abstract machine which computes the greatest SD-consistent
w.r.t. C estimate of variables X in *M, containing all witnesses of
the realization of C in M.
We conclude this section with the following simple example of a subdef-
inite model.
Example 5. Consider the signature X! defined in Example 1, and the
following ¥!-existential conjunction:

(Fz,y € real) x+y =6, 2xx =y, —100 < z, = < 100, —100 < y, y < 100,
which can be transformed (see Proposition 1) into the following CSP:
(Elx’yvtlatQat3at4at5at6 S 7"6(1,1) T+ Yy = tla t2 *Tr =Y, 6 = tly 2= t?
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—100 = t3, 100 = t4, t3 < 7, © < t4,
t5 S Y,y S t6, _100 = t5, 100 = t6

Let us try to find all witnesses of the realization of this CSP in the X!-model
R defined in Example 2. Let Ry be the finite set of rational numbers with
—o0 and +oo:

Ry = {—00,—100,-99.9, —99.8 ..., 99.9, 100, +-00}.

Consider SD-extension ZR of R by Rp-bounded intervals discussed in Ex-
ample 4. The filterings of constraints Loyy—¢,, Liova=y, do=t,, L2=tss Lts<a»
Igcgt47 It5§ya IyStG’ Ifl()o:tS, IlOO:t47 17100:,55 and IlOO:t6 are defined via
operations over subdefinite universes which have been discussed in Exam-
ple 4. The result of constraint propagation (which terminates in 79 steps)
is the following:

= [1.9,2.1],

= [3.9,4.1],
ti = [6,6],
ta2 = [ ) ]
ts = [-100,—100]
ts = [100,100],
ts = [-100,—100]
t6 100, 100].

M:

6. TYPES OF SD-EXTENSIONS

It should be noted that every model can have several possible SD-
extensions that differ in their inference/computation power as well as in the
computer resources they require. Let us consider some versions of such the
extensions which have been successfully used in the mathematical problem
solver UniCalc [12], the intelligent solver of arithmetic puzzles ARBOOZ 8],
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the system for calendar scheduling Time-Ez [13], and the technological pro-
gramming environment NeMo-TeC [5]. To simplify the notation, let us
denote the set of values M of the sort s in the model M by U, and call this
set a universe. We suppose that Uy is a finite subset of U. The class of all
possible SD-extensions of the universe U will be denoted by SD(U).

1) The simplest SD-extension of the universe U is the SD-extension
Single which has the following form:

USingle — {0y U {U}Y U {{z}|z € Uy}

It is clear that US™9' conforms to the definition of an SD-extension; it
is obtained by adding two special elements, undefined (U) and contradiction
(0), to the set Uy.

2) The maximal SD-extension of U, which we denote by UF"%™ is the
set containing U and all subsets of Uy, that is:

UEnum = p(Uy) U {U}.

In the case when U is a lattice (a set with two associative and commu-
tative operations V and A satisfying the absorption law and the idempotent
law), it is possible to define such types of SD-extensions of U as intervals and
multi-intervals. Let Uy be a finite sublattice of U, —oco and +00 be minimal
and maximal elements of U, respectively (if they do not exist in U, we add
them to U with Vo € U U {—00,+00} A —00=—00, 2V -+00=400).

3) the SD-extension by intervals:

UInterval _ {[&; E] | Q;E c UO U {—OO, —|—OO}}

Here [2,7] = {z € U |z Ax =z and x VT = T}, z is called a lower
bound of the interval, and T is an upper one. It is obvious that

[z,7]N [y, 7] = [z Vy,TAYL

Here, the empty set is represented by an interval [z, T], where x VT # T.
The entire universe U is represented by the interval [—oo,+oo|, and the
single element by {z} = [z, z].

4) the SD-extension by multi-intervals:

UMulti _ {f | é- _ Uf/[,f/[ c Ulm‘,erval’i — 172, . }
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Each multi-interval is a finite set of intervals. It is obvious that (), U,
and {z} are represented exactly as in the case of intervals, and

amﬁ:{azmﬁ7|zzlv2a7.7:1725}

We have discussed the interval extension of the set of all real numbers
in Example 4. (The notion of the interval extension is well-known, see [14].)
Let us consider another application of intervals.

Example 6. Let V = P(U) for some universe U, i. e. elements of
V' are subsets of U. It is obvious that V is a lattice with x Ay = x Ny,
xVy=zUy. Let Vy = P(Up), where Uy is a finite subset of U, —co = 0,
+00 = U. Then VInterval s an SD-extension of the universe P(U).

These sets have been firstly proposed in [4], where they are called sub-
definite sets. Consider semantics of an interval [z, Z], where 2,7 C U. The
elements of x must belong to the set represented by the interval, the ele-
ments of T may belong to the set.

Consider the following function computing the cardinal number of a set:
# :V — N. Its SD-extension ## : VInterval _, nInterval io qofined as
follows: ##[x, 7] = [#, #7).

The common properties of intervals in Boolean algebra have been con-
sidered in [15], where another examples of interval set operations can be
also found.

5) Structural SD-extension. Consider now a universe defined as the
Cartesian product of several sets: U = Uy x --- x U,. We can apply the
SD-extensions U9 and UF"™ to U. Moreover, if each of U; is a lattice,
then U is a lattice, too (as the Cartesian product of lattices), and so we can
apply the SD-extensions UI™terval and UMwt to U as well. However, one
extra SD-extension of U can be proposed.

Let *U; € SD(U;),i = 1,...,n. Then the system *Uy x - - - X *U,, will sat-
isfy the properties of the subdefinite extension, too, that is, *Uy x - - - x*U,, €
€ SD(Uy x - -+ xU,). The following question is of interest: if the form of the
SD-extension, applicable to both U; and U, is fixed, then what will be the
relationship between the set systems *(U; x --- x U,) and *Uy x --- x U,
? Consider these extensions for each type of the SD-extensions discussed
above:

Singl Single Single

Up x - x U,)>"9%¢ C U; X oo x USingle,

Enum Enum Enum

(U x -+ xUpy) o U x - x U, ,
(Ul N Un)lnterval — Ullnterval N l'jTIL'ntermzl7
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(Ul X e X Un)JVIultz 2 U{VIultz X e X UTIL\/Iultv,.

Thus we see that the choice of the SD-extension in the form 5(U; x --- x Up,)
or Uy X - - - x U, is not important only for intervals. Note that in the case of
enumerations (Enum) and multi-intervals, the choice of a “richer’represen-
tation (in the form *(U; x --- x U,)) considerably increases the resources
necessary to store these subdefinite expressions.

7. CONCLUSION

A framework for solving constraint satisfaction problem, namely, a sub-
definite model apparatus, is presented in this paper. This approach takes
into account some partially known information about values of objects.

Like other constraint propagation techniques, SD-models are based on
local computations; however, computations on all SD-models are performed
by a single data-flow algorithm which does not depend on the type of the
original problem. Generality of the approach, which is the basis of SD-
models, makes it possible to use them for the solution of problems which
are traditionally placed in different classes. For example, the apparatus
of SD-models can be applied to numerical problems (systems of linear and
nonlinear equations, or inequalities over integer and real variables), to logical
and combinatorial problems, to problems on sets, etc. The most remarkable
fact is that all these problems can be solved simultaneously within a single
SD-model.

Several programming systems based on the technology of the SD-models
have been implemented. The NeMo+ object-oriented technological environ-
ment [16] is the most general of them.

The investigation of the subdefiniteness and the use of the SD-models
in constraint programming is in progress. In particular, our objectives for
the nearest future are further development of the methods of representating
the SD-extensions with the corresponding modification of the computation
process and extension of the notion of subdefinite models to object-oriented
subdefinite models.
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